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Abstract

Paragliding competitions require finding a largest shape (triangle, broken line) in a set
of points discribing a path flown. Brute-force methods of finding the optimal results have a
time complexity of O(N®). Considering that the new GPS devices easily generate tracklogs
exceeding 30000 points, a different approach has to be taken. This article describes an
algorithm that exploits some geometric properties of the problem. The algorithm is very
fast with a reasonable time and space complexity in most cases.

1 Introduction

Cross country paragliding competitions pose an interesting optimization problem; given an
ordered set of points describing the path, find a set of points that would form a simple shape
(triangle, broken line) and maximizes some function (circumference, length of line). The
brute-force way of solving these problems is approaching time complexity of O(N?®).

The typical three problems being solved in a pragliding competition are:

e Find a longest broken line composed of 5 successive points.

e Find 5 succesive points s, p1, p2, p3, € that would maximize a function:

C(p17p27p3) - d(S, 6)

where c(p1,p2,p3) is a circumference of a triangle and d(s,e) is the distance between
the points. If

d(s,p)/c(p1,p2, P3)

is greater then a given constant (usually 0.05 or 0.2), the function returns zero.

e So-called FAI triangle is the same as above with the added constraint that the smallest
side of the triangle must not be smaller then 28% of the circumference of the triangle.

The time complexity of the problem is agravated by the fact that all coordinates are
spherical. In order to compute the distance between two points, the computer must perform
twice a sine function, 3 times a cosine and once arc cosine. Although a good computer today
can do about 25 milions of goniometric operations per second, it takes about 50 seconds to
compute distances between all points. To speed up the optimization we could theoretically
store the distances in the memory; for a tracklog 30000 points we would need 3.5 gigabytes
of memory. Although such amount of memory is slowly being adopted even for consumer
machines, it is at least inconvenient for normal use.



In practice we can choose from 2 types of number representation - 4 byte floating point
or 8 byte floating point. Although the operations on the 4 byte floating point numbers are
about twice as fast, the resulting precision loss is so high that it renderes the results unusable.

The approach taken in this paper is to exploit the geometric properties of the input data
to minimize the amount of goniometric operations. This allows us to cut significantly both
speed and space complexity in most cases.

2 Optimization algorithms

2.1 Dynamic programming approach to broken line

The broken line problem can be solved efficiently using dynamic programming approach in
O(n?) time. The dynamic programming approach is used in situations where a part of an
optimal solution is itself an optimal solution. For a free flight over 3 turnpoints, the path
to the first turnpoint itself is an optimal solution to the problem ”longest path over zero
turnpoints to this point”, the path to the second turnpoint is an optimal solution to the
problem ”longest path over 1 turnpoint to this point” etc.

Figure 1: Part of the optimal solution is itself an optimal solution

We start with a table Eg containing zero values. Then in every step we create a table Ej
using the equation:

Eqli] = 1rr<1§_m§i[ES_1[j] + distance(pi, p;)]

where p; is the i-the point of a tracklog. Element Fj[i] thus contains the longest straight line
leading into point p; from some point preceeding the point p;. Element Es[i] contains the
longest broken line over one turnpoint leading into the point p;. Element Es[i] contains the
longest broken line over 3 turnpoints leading into the point p;.
In order to compute the free flight over 3 turnpoints, we compute:
max Esli]
where n is the number of points in a tracklog.

A modification of this algorithm allows us to compute distance(p;, p;) only once without
the need to store it in memory between the iterative steps. Computing a free flight over 5
turnpoints of a tracklog of 30000 points using this more efficient method takes today about
50 seconds on a good computer.

2.2 Branch and Bound Optimization

Although the previous method is not particularly slow, it cannot be adapted to the triangle
problems. A simple branch and bound method seems apropriate. The branch and bound



algorithm uses branching method to split a set of candidate solutions and a bounding method
to find out upper or lower bound of a solution. Based on the upper or lower bound the
algorithm discards a whole set of candidates without needing to inspect every one in detail.

In our case the bound function will return the maximum score function for the shape, in
a given set of candidates. The branch and bound algorithm we will use is:

1. Find a candidate set with heighest maximum score.
2. If the candidate set contains exactly 1 solution, return it.
3. Otherwise branch the candidate set into smaller sets.

4. Repeat.

In order to efficiently find the candidate set with the heighest maximum score, we will
maintain a binary tree with certain properties:

e candidate sets have no children
e node is either a candidate set (0 children) or it has 2 children

o score(leftchild) > score(rightchild)

e score(parent) = score(le ftchild)

Figure 2: Example of an optimization tree and one branching step

Although the tree will not be balanced most of the time, the search time for the candidate
set with highest maximum score will be reasonably limited, especially if we choose a good
branching function.

In order to reduce complexity, we will immediately collapse the tree if the score function
reports that no solution exists in the given candidate set. This usually happens when we search
for a triangle and it is clear that the candidate set cannot contain any triangle fulfilling the
criteria. Alternatively, if we find some solution e.g. during a broken line search, we can safely
discard all solutions that have lower score then the one we already found.

Because searching for maximum triangles may be a very difficult task, we first compute a
free flight score using the dynamic programming algorithm on a reduced set of points. Such a
solution is a valid solution, albeit probably not a maximum solution. The result is then used
as a cutoff point for subsequent problems; all candidate sets with lower maximum score are
immediately discarded.



3 Branch and Bound

3.1

Rectangle Sets

The basic required operations between two sets of points are maximum and minimum distance.
Although we could compute it by comparing distances between all points (O(NN?)), the main
requirement for the bound method is speed; we need to compute it fast.

The first idea is to compute a reasonably small circle that would contain all points from a
given set. This can be computed in O(N), the longest distance is simply distance between the
centers plus radius, minimum distance is distance between the centers minus radius. However,
we claim that computing a bounding rectnagle has significant advantages over the circle:

The time complexity of computing the rectangle is O(N), but this time without any
use of slow goniometric functions.

It is easily additive; given bounding rectangles of two sets, the precise rectangle of the
union can be computed without inspecting the individual points.

As most flight tracklogs contain straight lines, the rectangle is significantly more precise.

It is friendly to the precomputed sine and cosine of individual points; the vertices of the
rectangle can be computed by combining the values of individual points without any
need to use goniometric functions.

It is easier to create more precise score functions.

The rectangle sets seem to exhibit more favourable behaviour then the circle sets. In order
to eliminate recomputing the rectangle when the set of candidate is branched, we will build
the rectangle sets in the beginning. During the optimization, the branching step then simply
means using the content of a bounding rectangle (figure 3).
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Figure 3: Branching using rectangle sets



The maximum and minimum distance are slightly more complex. The longest distance
between two rectangles is equal to maximum distance between the vertices. In order to
compute the longest distance we thus find the maximum path over all possible combinations
of vertices of the two rectangles.

The minimum distance is similar; if the rectangles overlap, return 0. If they overlap
neither on latitude nor longitude axes, return the minimum over all combination of distances
of the vertices. If they overlap over longitude axis (one is northern of the other), compute the
distance along the latitude axis. If they overlap over the latitude axis (one is western from
the other), compute minimu longitude distance between opposing vertices of the rectangles.

3.2 Informal Proof of Corectness of Rectangle Sets

“The longest distance between two rectangles is equal to the maximum distance between the
vertices.”

3.2.1 Euclidian Geometry

The term longest distance between sets of points S4 and Sp denotes:

MSy,Sp = Asélg |AB|
A
BeSp

Theorem: given a point A, the longest distance between a point and a rectangular set of
points can be computed as follows:

sup |AB| = max |AB|
BeSp Bevertices(Sg)

Proof:

Lemma: given a point A, the longest distance between a point and a rectangular set of
points can include only points on the edge of the rectangle. (without proof)

When computing a distance in euclidian space, we will use a right-angle triangle (figure
1)

Figure 4: Euclidian distance from a rectangle

d(x) = /22 + 42



This is a function of a distance between a point and horizontal line in a 2D space with axes
X and Y. We have fixed the Y axes and move along the X axes. The function d(z) has total
minimum in x = 0, it is decreasing in negative numbers and increasing in positive. Thus, the
maximum of this function (longest distance) over a horizontal line segment lies on the edges
of the domain — in the vertices of the line segment. Similarly for vertical edge of a rectangle.
Now we will prove that:
MSy,5 = max |AB‘

Aevertices(Sa)

Bevertices(Sg)
Proof: let’s claim otherwise. We have already proven that at least one of the points A and
B will be a vertex of one of the rectangles. Suppose that B is a vertex of a rectangle and A
is not a vertex, and mg, s, = |AB|. Then according to the previous theorem the maximum
distance from B to S4 is equal to Max 4 cvertices(s.,) |A,B|. But A was supposed not to be
a vertex.

3.2.2 Spherical Geometry

Many things that work in euclidian geometry do not work on a sphere. However, in the next
paragraphs I will try to prove that if we consider small enough distances (i.e. smaller than
90°, we can safely use the same theory).

Our spherical “rectangles” are defined by latitude and longitude. In order to prove the
theorem, we will divide the options into different catagories.

Lemma: the longest line does not consists of points inside the rectangle.

First let’s think about the scenario that the lemma is not valid; we will claim that there
is a point B that is not inside (i.e. not on the edge) the rectangle Sp whose distance from
some point A is higher then from any other point in a rectangle Sg. This is true if the points
A and B are the opposite poles of the sphere. In all other cases we can construct a line AB
and find points along the line that are further away from point A until we reach the edge of a
rectangle. Therefore, in further discussion we have to prove the theorem only for the points
on the edges.

Figure 5: Right angle triangle on sphere

Let’s start with the meridian edge first (figure 5). For any point A and a point B that
is part of a segment of meridian line M M, we can construct a right-angled triangle, whose



hypotenuse (¢) measures the |[AB| and one leg (a) is part of the meridian corresponding to
M. In such triangle, we can use a spherical version of the Pythagorean theorem:

cosc = cosacosb

The distance function for a fixed point A, when moving along the meridian (i.e. thus varying
the length of a) is:
d(a) = arccos(t cosa)

As long as cosa and cosb are positive (i.e. in the interval (=75, %) ), the function d(a) has
minimum in ¢ = 0 and is decreasing in negative numbers and increasing in positive. Therefore,
the longest distance can again be found at the vertices of the segment M; as long as the points
are less then 7 radians apart.

To prove the theorem on the latitude line, we will use the equation for measuring general

distance between two points on a sphere:
|AB| = arccos(sin Ajgs sin Bjgs + cos Ajqs cos Biat c0s(Ajon — Bion))

When we fix the point A and move along the latitude line, the distance function will look like
this:
d(l) = arccos(c1 + co cosl)

This function has minimum in ! = 0, i.e. when the points A and B are on the same meridian.
The function is decreasing in negative domain and increasing in positive, the maximum —
again — is found on the vertices of the segment of the latitude line of our rectangle set.

Figure 6: Distance of a point to a line segment on a latitude line

We have effectively proven that the theorem is true as long as the longiuted distance is
less then 90°, which is about 3400km on 70° of latitude (north of Alaska). That seems to be
appropriate for our objectives.

3.2.3 Ellipse in the Spherical Geometry

Most of the optimization algorithm hinges on a a more complex situation: Given points A
and B and a rectangle S¢, is it true that:

sup (|AC|+[|BC|) = max (|ACyer| + | BCyer|)
CeSc Cyerevertices(Sc)

This theorem is true in Euclidian space; the set of points with the same sum of distances
from 2 points is ellipse. Ellipse is convex, thus an intersection with a rectangle produces
either all points inside or at least one vertex outside of the ellipse. Therefore, some vertex of
a rectangle is really the point with maximum sum of distances from the 2 points.



On a sphere, we will first construct a reflection of the point B along the meridian. The
shortest path between points A and B’ is going through the point Cs. The length |AC|+|CB’|
(which is the same as |[AC|+|CB|) is obviously (see appendix) monotonally increasing on both
sides of the point Cs along the C'C line segment, therefore we can find again the maximum
in the vertices (figure 7).

Figure 7: Longest distance from 2 points is through the vertices of a line segment CC

However, it is clearly not true for the intersection of the latitude line and an ellipse. As
can be seen on figure 8, the distance |AD| + |DB| is longer than the distance |AC| + |CB].
If a rectangle has one side defined by latitude segment C'X, measuring the distance from the
points A and B only over the vertices (i.e. points C' and X') would not return a correct longest
distance.

Figure 8: Distance from two points is longer through the point D instead of C

Because the mathematics gets quite complex, some numerical tests were done. The de-
viation of the theorem depends on height (|AC|), width (|AB|) and latitude of the area. 2
triangles were measured (the ACB and ADB as on figure 8). The difference between the cir-
cumference of these triangles measures the deviation of the algorithm from the correct result.
When the area gets higher, the algorithm yields better results. When the area is wider or we
move nearer to the pole, the algorithm deviation is higer.

However, the deviation for an area 300km wide (corresponding to 600km flat triangle),
100 m high located on the 70 latitude line (north of Alaska) is 56 meters. The difference
disappears when the area is only 160m high. The break-even height of a more realistic 200km
flat triangle located on the 55 latitude line is 1.7 meters.

There are 2 options to correct for the deviation; one is to find a formula that can character-
ize the deviation and use it to correct the results. Other is to recompute all coordinates into
a different system, e.g. use a meridian-type system instead of latitude. This would probably
require significantly more complex computations, however it would be needed only to find out
the correct bounding ”rectangles“. Once the "rectangles“ are found, all other computations



Deviation on 55 latitude line
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Figure 9: Deviation from correct longest distance

could continue in the usual coordinate system.

It is obvious that the deviation of our algorithm from the correct values is small enough
to be ignored. The deviation would only manifest in very large and very flat triangles or
very long and extremly straight east-west free flights and even then it would be very small.
Additionally, the optimization algorithm practically guarantees that these deviations will
have zero impact on the results of optimization of triangles and makes it very unlikely for free
flights; considering the shape of the deviation function, the total deviation will not exceed
the numbers depicted in figure 9 when we use width as a total distance of a free flight.

3.2.4 Meridian-like system for latitude

In order to correct for the deviations described in the previous chapter we could compute
the bounding rectangles in a different coordinate system (figure 10); afterwards we would
convert the rectangle vertices back into the classical latitude/longitude system and use the
algorithms described in the following sections. This algorithm was not implemented as the
gain is negligible.

Figure 10: A different meridian-like coordinate system for latitude

To convert latitude into a meridian type coordinate with a center on the (0,0) coordinates,



the following formula can be used:

tan P,
tan P, = 7M
sin Pop

3.3 Broken-line Bound function

The simplest way to compute a maximum score for a broken line is to add the maximum
distances between the sets corresponding to each point (figure 11).

-~

Figure 11: Simple algorithm for longest broken line

A better approach comes from an insight that the maximum path traverses always through
the vertices (or, through the intersection with the equator). We can easily build a significantly
more precise score by using a dynamic programming algorithm to find out the longest path
over the vertices of the different rectangles without sacrificing any speed (figure 12).

Figure 12: More precise algorithm for longest broken line

3.3.1 Vertex Elimination

Under certain conditions we can eliminate vertices on the edges of the broken line from the
computation. If the first two or last two rectangles do not overlap, we will discard the vertices
on the adjacent side.

3.3.2 Straight Line Detection

Simulation of the optimization algorithm revealed that some patterns significantly overesti-
mate the expected score of a candidate set and reduce the ability of the optimization algorithm
to prune the search tree of bad solutions. This is particularly visible when multiple vertices
share one set of points.

When 2 candidate solutions sharing the same set of points are detected, temporary branch-
ing of this area is performed and the highest score is returned. As most of the tracklogs actu-
ally consists of straight lines, this optimization lets the score function converge significantly
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Figure 13: Elimination of some vertices on the edge rectangles from computation

Figure 14: Longest line with 2 points sharing one set (left), better result by eager branching
(right)

faster and allows the optimization algorithm to dispose of bad solutions much sooner (figure
14).

3.4 Triangle Bound Function

We use exhaustive search over all the vertices of the rectangles that define the sets correspend-
ing to the triangle vertices. Additionally we have to check whether the triangle is closed, i.e.
if there exist points s and e that are near enough, where s preceeds first point of triangle and
e succeeds the last. The condition is usually a percentage of the total triangle circumference.
When we define V1, V5 and V3 to be sets of vertices of a bounding rectangle of a set of points
corresponding to the vertices of a triangle, mindist(S,E) to be a a good guess of a minimum
distance between sets of points for checking closing condition, the scoring function for a flat
triangle becomes:
Chlat = max [triangle(v1, v2,v3)] — mindist(S, F)
v2€Vh
v3€V3
Additional conditions are placed on FAI triangle; first it is checked whether the triangle

can be closed at all and if it is really possible to draw a FAI triangle using given coordinate
sets. The FAI condition allows us to produce a different scoring function. When we define a
smallest possible triangle side as:

e= min [max distance(vy, v2)]
(A7B)E{(V17V2)7(V27V3)7(V37V1)} Ulgg
va

the scoring function can be computed as:

& — mindist (S, E)

The resulting scoring function for FAI triangle then becomes:

Cufai =

Cfai = min{cflat7 Cufai}
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3.4.1 Vertex Elimination

The longest triangle computation takes 3.4 = 192 distance operations. Reducing the num-
ber of vertices from the computation can dramatically lower the expected time. In certain
particular — although quite typical — situation we could reduce the total number of distance
computations to 12.

Figure 15: One set included in another over longitude axis (left), no inclusion (right)

If any candidate set is not completely included in any other candidate set over latitude or
longitude axes (figure 15), only the 2 situations in figure 16 are possible. The longest triangle
can be found among the circled points.

)
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Figure 16: Two possible situations with non-overlapping sets

This optimization reduces in most typical cases the number of distance computations from
192 to 12. It reduces the total computing time by 50%.

3.5 Branch Function

The whole algorithm begins with one candidate set “all vertices are in a bounding rectangle
comprising all points”. As the bounding rectangles form a binary tree themselves, the branch-
ing step starts with the two children sets. The branching will produce several new candidate
sets, e.g. “all vertices are in the first set”, “first vertex is in the first set, all the other are in
the second set”, “first two vertices are in the first set, the others are in the second one” etc.

During the optimization algorithm the input to the branching function is thus something
like “First n; points are in set s, next no points are in set sg, etc.”. The branching step
chooses some set (e.g. s2), divides it (into s2, and sg,) and produces new candidates with the
points redistributed between the sets; e.g. “first ni points are in set s1, next ny points are in
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set sg,, etc.”, “First n; points are in set si, next ng — 1 points are in set s3,, next 1 point is
in set s2,”, etc.

Several different ways to choose the set to be divided were tested - among others the
number of vertices sharing one set, number of points in the set, area of the set. Surprisingly,
consistently best results were obtained by choosing the set with the longest diagonal of the
bounding rectangle.

4 Additional Optimizations

By tracing the input to the distance function we found out that only about 3% of the distance
computations are unique; 97% are repeated computations of distance over the same 2 points.
Several tests where made using different approaches to cache the results (Hash table, IntMap,
Judy), but none was successful in speeding up the computation.

We could probably speed up the computation if we maintained a lazily computed array of
distances between the points — and in our case the distances between all the vertices of the
bounding rectangles. The memory requirements would come to several gigabytes. Trading
space for time in this case might make some of the micro-optimizations described above
obsolete.

5 Conclusion

The algorithm described in this article was implemented in Haskell, tests were done using the
GHC 6.10.4 compiler on an Intel Core2 Duo L9600 running on 2.13GHz. Several tracklogs
with 2000 - 30,000 points were tested. The results are very satisfactory; the great majority
of tracklogs is analyzed within a fraction of a second. Free flights comprising of 30,000 points
take about 11 seconds while needing ~ 50MB of memory. A semi-unclosed FAI triangle (an
example of a very hard to optimize flight) with about 10,000 points took 2.5 minutes and
needed ~ 100MB of memory.
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A Is an ellipse on a sphere convex?

We have already proposed a meridian-like coordinate system to provide correct bounding
rectangles. Here is the obvious proof that it works correctly.

First, let’s define a function f(z); the function defines the distance |AX| 4+ | X B| (see
figure 7), where x is a distance from point Cs (e.g. positive to the north and negative to the
south). If the function has local minimum in the point Cs and is decreasing in the negative
numbers and increasing in the positive (for z being small enough compared to the radius
of the sphere), our algorithm works properly. Incidentally, this also proves that an ellipse
projected on a sphere is convex.

The proof is actually simple; as you move along the C'C' further away from the point
Cs, the nearer triangles are completely inside the triangles with point C' further from point
Cs. Therefore, we have only to prove that a triangle that is inside another triangle is really
smaller.

Figure 17: Small and large triangle

On figure 17 you see triangles ACB and ADB. As |AD| > |AC/|, we have to find some
other way to compare them. We will construct a point E, where |BD| = |BE|. Then |AE| >
|AD| (as we have proven in section 3.2.2 for distance from latitude line) and |[ACE| > |AE)|
(by triangle inequality).
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